Process Technology

  Tub with molten glass Copyright: © Pixels

The number of applications for the material glass require different process steps and technologies in the production. Glass usually has to be melted from raw materials and recycled cullet at high temperatures, making production energy- and cost-intensive. Due to this reason and the necessity to minimize carbon dioxide emissions, the existing processes have to be optimized and process alternatives have to be researched.


Alternative fuel gases for the glass industry

Burner with a flame Copyright: © NaN

The glass industry is one of the smaller sectors of the energy-intensive industry in Germany. Glass tanks are mainly operated with natural gas, less often with oil. Due to the energy turnaround, possibilities for carbon dioxide reduction in the glass manufacturing process are being investigated, whereby carbon dioxide-free fuels can be a solution.
One possibility is the combustion of regeneratively produced hydrogen with oxygen from the same source. However, there is a need for a detailed knowledge of the technological suitability of hydrogen as a fuel gas for the glass melting process as well as of the influences of the strongly changed exhaust gas atmosphere in the glass melting furnace. As an alternative to direct combustion of hydrogen, it could be transformed with carbon dioxide into fuels with higher energy density, such as methane or methanol known as Power-to-X technology. Both possibilities are being investigated at the department as part of an industrial project.



Portrait of the employee © Copyright: GHI


Philipp Jacobs

X-Ray Diffraction


+49 241 80 94992



Wetting properties of glass melts on (metallic) solid surfaces

Droplet formation at the exit of a capillary Copyright: © GHI Droplet formation at the exit of a capillary

Glass enables a closed material cycle in the packaging industry due to its complete and economic recyclability. Glass bottles for beverages and hollow glassware are generally produced using (metallic) molds that come into direct contact with the molten glass and therefore run the risk of showing adhesions. Glass-to-metal adhesion is usually described by technological parameters such as bonding temperatures or a critical viscosity, and in practice is prevented by regularly applied lubricants.
For the targeted development of better mold materials, however, it is necessary to better understand not only the adhesion tendency but also the (dynamic) behavior of the liquid glass on (metallic) surfaces from a physical and materials science point of view. Wetting plays an important role in many areas and has not been sufficiently investigated for glass-to-metal contact. Therefore, the wetting and movement properties of a molten glass drop on different materials under different ambient atmospheres are investigated.